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Abstract: We derive, supported on a generalization of Bernoulli’s equation, a law of rotation for any axial-symmetric, 

self-gravitating fluid mass. For a homogeneous mass, the law depends solely on the derivative of the potential with respect to the 

distance to the rotation axis, implying generally differential rotation, the Maclaurin spheroids representing the only case of 

solid-body rotation. We turn then to a heterogeneous mass consisting of any number l of concentric layers, each of constant 

density, finding that the angular velocity profile of a given layer depends on that of the layer immediately above it. Finally, we let 

l tend to infinity to convert our model into continuous mass distribution, the result being a certain rotation profile for the surface, 

and law of differential rotation change at its interior. To support the fundamentals of our approach, we write the potential integrals 

for the three mass distributions. The aim of a continuous distribution is that it may facilitate a comparison---to be carried out in a 

future paper---between our results and those of other researchers who employ structure equations. We point out that the 

distribution of angular velocity is a consequence of the equilibrium, rather than being imposed ad initio. The law was used in a 

past paper to construct a Jupiter multi-layer model adopting the spheroidal (a distorted spheroid) shape for each of the layers, 

taking as reference the gravitational data surveyed by the Juno mission. The procedure used here is not restricted to 

axial-symmetric cases. 
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1. Introduction 

In the current paper, we derive, consistent with Euler’s 

steady-state equations of fluid motion (zero viscosity), a law 

of rotation valid for any self-gravitating, axial-symmetric fluid 

mass. The fundamentals of our formulation were previously 

discussed [1, 2], and only its main aspects will be recalled here. 

In essence, the law states that the angular velocity at the 

body’s surface is proportional to the derivative of the potential 

with respect to R
2
, where R is the distance from the rotation 

axis. Since the Maclaurin spheroid is the unique case in which 

the potential at the surface is a linear function of R
2
, it must 

rotate as a solid-body; in other cases, the angular velocity 

necessarily varies on the surface, that is, it is of a differential 

type. This outcome convinced us that, given the mass’ shape, 

there is no freedom in choosing the angular velocity. 

Conversely, given the angular velocity profile, is it possible to 

deduce the surface shape? For example, it is known {3} that 

the Sun rotates differentially at a rate given by the 

approximate formula 

6 2 42.87 10 (1 0.12cos 0.17cos )ω ϑ ϑ−= × + −  rad s-1   (1) 

where ϑ  is the colatitude measured from the rotation axis, 

and cos � � � √�	 
 �	⁄  (in terms of the variables we will 

use here). Since the surface potential (its derivative), is related 

to �	 , the expectation is that the Sun’s rotation would 

determine its potential. However, the object’s shape is not 

implicit in equation (1), that is, the function � � 
��� is not 

known, and without this information, the surface potential 

cannot be calculated. Since for the time being applications are 

not intended, the solar rotation will be deferred to future work. 

Recently [4], we built a model for Jupiter made out of a 

number l of concentric layers, each of constant density., and 

each rotating with its distribution of angular velocity. Given 
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that Jupiter’s shape is unknown, we assumed that each layer is 

a distorted spheroid (a spheroidal, following Jeans [5]), with a 

fourth-order distortion term in the z-direction (the rotation 

axis). The resulting figure (l=15, say) rotates with an 

equatorial period of about 10 h, considerably faster than the 

Sun (about 25 days); this means that Jupiter must be more 

distorted than the Sun. The theoretical results for Jupiter can 

be expressed by the approximate formula: 

)cos02.0cos66.01(1070.1
425 ϑϑω −+−×=  rad s-1 (2) 

In the first few sections of the current paper, we recapitulate 

and precise our earlier results. To reach our Jupiter model, we 

started with a homogeneous spheroidal mass, which was next 

invested with a concentric---but otherwise free from any 

relation between their respective semi-axes---spheroidal layer; 

we refer to the two layers of this model as the core and the 

envelope. Usually, the core is denser than the envelope, but the 

opposite can also be possible; furthermore, the prolate form 

for the core is possible for low relative densities. Next, the 

Jupiter model was made to consist of any number l of 

concentric layers, which improved the results of l=2. In the 

current paper, we revise, regardless of the shape, the 

multi-layer distribution, and we extend our results to a 

continuous distribution attained by letting l tend to infinity. 

The potential integrals are written explicitly. The aim of 

studying a continuous distribution is that it may facilitate a 

comparison (to be carried out in future work) between our 

results and those by other researches who employ structure 

equations. We remark that in our approach the rotation profiles 

are a consequence of the theory, rather than being 

pre-imposed. 

2. The Law of Rotation 

2.1. The Homogeneous Mass 

In a past paper [1], we worked out the case of homogeneous 

fluid motion in steady-state, of which only the more relevant 

aspects will be reproduced here. The basis of our procedure 

rests on Euler’s equations: 

��
�� 
 �� ⋅ ��� � �� − �

� ��,
��
�� 
 � ⋅ �� � 0      (3) 

where v is the velocity field, V the gravitational potential, p the 

pressure, and ρ the density at each point of the fluid at time t. 

In the special case of a stationary state, which will exclusively 

be considered here, all variables depend on the position but are 

independent of time. Hence, equations (3) become 

�� ⋅ ��� � �� − �
���, � ⋅ �� � 0         (4) 

These expressions will be applied first to a fluid of constant 

density, independently if it is incompressible or not, so that 

equations (4) become 

�� ⋅ ��� � �� − �
���, � ⋅ � � 0          (5) 

Using a known vector identity, the left-hand side of the first 

of equations (5) becomes 

� ��	 �	 − � 
 �
� � � � × �� × ��         (6) 

For a streamline (tangent to v) is valid the relation 

(Bernoulli’s equation) 

�
	 �	 − � 
 �

� � � "               (7) 

k being a constant. In general, k changes from one 

streamline to another: k=k (x, y, z). Therefore, according to 

equation (4), k must satisfy the relation 

�" � � × �� × ��               (8) 

for any velocity field. From equation (8), it follows that the 

special case for which k is constant everywhere is the 

irrotational flow. In what follows, the shape of the mass will 

be restricted to have axial symmetry (f (x
2
+y

2
, z

2
)=0). 

Additionally, it will be assumed that the motion is of a rotatory 

kind, so that the velocity field is given by 

� � �−�#,�$, 0�               (9) 

where � is the usual non-constant angular velocity, and the 

parenthesis is a vector with components −�#,�$,  and 0 

along the cartesian axes. The continuity equation (second of 

equations (3)) puts a restriction on the velocity field (9), 

expressed as 

�%
�&' �

�%
�('                 (10) 

This means that, generally, the angular velocity must be a 

function of the kind 

� � ��$	 
 #	, �	�            (11) 

where it is assumed that the velocity field is symmetric 

regarding the z-axis. In cylindrical coordinates (R, ϕ , z) the 

problem is independent of ), and the velocity field (tangent to 

circles) has only a )-component: 

� � �0, ��, 0�              (12) 

The parenthesis being a vector with components 0,��, 0 

along to the unit vectors *+ , *, , *-	so that v has the non-zero 

component �, � ��	only. From equation (8), we have 

�3
�+' = �	 ��	 �%

�+' + � , �3�-' = ��	 �%
�-'      (13) 

The general solution of equations (13) can be found as was 

done in [1], namely with the variable change 

� = 4	5
+'                 (14) 

So that equations (13) become 

�3
�+' = �5

�+' + �
+' Ω, �3�-' = �5

�-'          (15) 
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From the second of equations (15), we deduce 

"��	, �	� � Ω��	, �	� 
 
��	�        (16) 

where f is an arbitrary function. Thence, the first of equations 

(15) implies that 

Ω��	, �	� � �	
7��	�,	or	�	 � 2
′��	�    (17) 

i.e. the angular velocity can be at most a function of R only, 

and likewise k: 

" � �
	�	�	 
 
��	�, �	 � 2
7��	�      (18) 

Since the angular velocity does not depend on z, it is 

constant on cylinders of radius R, a well-known result 

established long ago ([6], pp. 176-178) 

Substituting k of equation (18) in Bernoulli’s equation (7), 

we obtain, after some elementary algebra 

−
��	� − ���	, �	� 
 �
� � � 0        (19) 

Since function f depends on R but not on z, to evaluate it we 

require only the boundary surface of the figure, where p=0: 


��	� � −���	, �	�            (20) 

where z is a function of R for a mass with cylindrical symmetry. 

Equation (20) allows to determine the unknown function f 

(=-V), and with equation (18),ω is established: 

�	 � −2 :;
:+'                (21) 

Equation (21) is the general law of rotation for an 

axial-symmetric self-gravitating homogeneous fluid. 

2.2. The Multi-layer Mass 

In this section, the configuration of our model consists of 

any number l of concentric layers, each of constant 

density 	�< 	�* � 1, . . , >�, ��  is the density of the outermost 

layer. For any shell i, the equilibrium equation (19) holds 

�
�? �< � 
<��	� 
 �<��	, �	�          (22) 

where	�<��	, �	� is the total potential at the point ��	, �	� of 

the body, 
< an unknown function, and �<the pressure at the 

same point. The l unknown functions are established 

employing the boundary conditions at several interfaces: 

Surfaces	F�:	�� = 0, F	:	�� = �	, F<:	�< = �<H�. 
No transfer of mass at the interfaces is assumed [7]. The 

surfaces F< are concentric but otherwise independent of one 

another. Any surface equation is of type	I(�, �) = 0, so that, 

on solving for z we get 	� = ℎ	(�) , and all quantities in 

equation (22) depend only on R. Therefore, according to 

equation (22), and knowing that the potential is continuous, 

from the boundary conditions there result 

1
�� �� = 0 = 
�(�	) + ��(�	, �	), or	
� = −��, 

�< = �<H�:	(�< − �<H�)�< + �<
< − �<H�
<H� = 0 

Or 


< = − K�?
�? �< +

�?LM
�? 
<H�            (23) 

where N�< = �< − �<H�, N�� = �� 

Taking the derivative of equation (23) with respect to R
2
 and 

using relation (21), we obtain for the angular velocity 

�<	 = −2 K�?
�?

:;?
:+' + �?LM

�? �<H�	          (24) 

Equation (24) is the rotation law for the multi-layer mass. In 

general, the gravitational potential is not a linear function of 

R
2
 at each interface point (except for a Maclaurin spheroid), so 

that every layer rotates with its particular differential angular 

velocity. 

2.3. The Continuous Mass 

We will now direct our attention to the more general case 

where the density varies continuously from the surface to the 

center. This is achieved by letting the number of layers l tend 

to infinity while their widths tend to zero; also,	N�<tends to 

zero. Let us call �<	 = �	 = �<H�	 + O�	. Taking the limit of 

equation (24), we obtain 

:%'
:� = − 	

�
:;
:+'                (25) 

In this procedure, the mass is tacitly divided into isodensity 

surfaces, each one rotating differentially at a rate given by 

equation (25); we remark that the surfaces are axially 

symmetric. Substituting in the gravitational potential V an 

equation of the type � = I(�	), V becomes a function of R
2
. 

Additionally, a reasonable boundary condition is to suppose 

that the surface of the mass is isobaric. Then the pressure �P 

is constant and can be small or zero. Let the density on the 

surface be �P. Hence, according to equation (16), we have 

�
�Q �P = 
P(�	) + �P(�	, �	)        (26) 

where 
P(�	)	and	�P(�	, �	) are functions referred to points 

on the surface. Since the shape of the mass is of the form 

� = I(�	) , the potential becomes a function of R
2
, and 

therefore the angular velocity �P	  for the surface S is 

established (see also equations (18)): 

�P	 = − :;Q
:+'                (27) 

Equation (27) is the starting point for, in principle, 

determining the angular velocity at any internal point, and 

equation (25) allows to fix, step, by step, the changes in ω 2. 

3. The Potential 

3.1. The Multi-layer Potential 

As in section 2.3, we consider here a body consisting of l 

layers, the outermost being limited by the surfaces S1 (upper) 

and S2 (lower); we call Δτ� and ρ1 its volume and density, 

respectively. The volume enclosed by S1 is designated by U� 
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and corresponds to the whole body’s volume U. In genera 

l, the i layer is limited by the Si and Si+1 surfaces enclosing 

the volumes U<  and U<V� respectively. The volume of the i 

layer will be denoted by Δτ< . Let r be a point on the surface Sm. 

Hence, the total gravitational potential is given by the 

well-known expression 

���� � W X ���′�
|� − �7| OU′Z7

 

Since the density ���� is constant for all points of a layer, 

the potential can also be expressed as 

���� � W ��� [ :Z7
|\H\]|^ZM 
 �	 [ :Z7

|\H\]|^Z' 
⋯       (28) 

Remembering that ΔU< � U< − U<V� , expression (28) is 

equivalent to 

���� � W ��� [ :Z7
|\H\]|ZM 
 ��	 − ��� [ :Z7

|\H\]|Z' 
⋯ � W ∑ N�< [ :Z7
|\H\]|Z?

a<b�                  (29) 

where	N�< � �<V� − �< , N�� � �� 

The mass enclosed by the surface Sm contributes to the total potential at the point r as an external potential; the mass above Sm 

contributes as an internal potential. Therefore, equation (29) is equivalent to 

���� � W ∑ N�<c<b� [ ��\7�
|\H\]| OU′Z? 
 W ∑ N�<a<bcV� [ ��\7�

|\H\]| OU′Z?                        (30) 

The first sum is the interior part of the potential, i.e., the point r is an inner point of the distribution. The second sum is the outer 

part of the potential (r lies outside the distribution). 

3.2. The Continuous Case 

For a continuous distribution of mass, we take in equation (30) the limit for an infinite number of layers of infinitely small 

thickness (N�< → 0, N�� ≠ 0) resulting in 

���� � W�� [ ��\7�
|\H\]| OU′ 
 W [ [ ��\7�

|\H\]|OU7 
Z7in
�
�M W [ [ ��\7�

|\H\]|OU7Z7fg
�h
�Z                    (31) 

Notice that, for reaching this result, the body is subdivided 

into (axial-symmetric) surfaces of constant density. The � 

integrals are evaluated by computing first the potential over 

the volume (τ ’
in or τ ’

ex) limited by a surface �′=const., for 

each �′ of the interval; here, �i is the density at the center, 

and ��  is the (constant) density at the body’s surface. For 

stars and liquid planets, the density at the “boundary” is small 

and can be taken as zero. In equation (27), the first term is kept 

for reasons of generality, the potential is for a point r at the 

surface �=const.. Obviously, this procedure can be applied to 

any integral of type (28), such as 

[ ���7�j��7�	OU7 � �P [ j��7�	OU′Z7 
 [ O�′�h
�Q [ j��7�	OU′Z7Z  (32) 

The integrands in equations (31) and (32) of the integrals in 

U′ implicitly depend on	�′, and they must be calculated at each 

point of the corresponding isodensity surface. In particular, if 

the surfaces are established by a set of parameters, where any 

of them must be generally considered as dependent of �. 

4. Conclusion 

In the way that conduced to the rotation law 

�	 � −2 O�
O�	 

we took two natural steps: the well-known facts that the 

angular velocity is constant on cylinders and that the motion 

has an effective potential (equation (19)): 

�eff � ���	, �	� 
 
��	� 

which was not called by its name, because is not important for 

our study. It is equivalent to the commonly used potential ([6], 

p. 68) 

Φ � V�R	, z	� 
 X �	��7��7O�7.
+

 

Certainly, remembering that �	 � 2
′��	� (equation (21)) 

and integrating this respect to R, one gets Φ. The law Φ �const. 

and our rotation law are equivalent. Nonetheless, ours has the 

advantage of being expressed in a differential form, since one is 

more familiarized with such representations. Equation �	 �
−O�/O�	  shows clearly the relation between the rotation 

profile and the body's shape (that fixes V): knowing the shape and 

therefore, the potential, the rotation profile is established; one 

cannot use this profile for a distinct form because its potential 

function will be different. The integral representation of the 

effective potential can eventually induce confusion when using it 

in an application. For example, choosing a constant angular 

velocity (a common case, for example [9]) in Φ and intending to 

find a figure that is not a spheroid would be impossible. However, 

the differential relation teaches that only the spheroid has 

� � const because the potential is a linear function of �	 on its 

surface (Maclaurin spheroid 

In our model the pressure is continuous at each point of a shell 

surface and, in general, it is not constant on the whole surface, 

because of differential rotation. Hence, isodensity surfaces are 

not isobaric. An assumption of a relation between �	and	� 

cannot be done here (barotropic relation, like in Ostriker and 

Mark [14]). In studying small oscillations of differentially 

rotating gas masses, Tassoul assumes a relationship between the 
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variations of �	and	�, but not for the variables themselves [15]. 

Notice that our procedure is not restricted to the rotation 

state of axial-symmetric mass distributions. This is because it 

is sustained on the generalized form of Bernoulli's equation 

(equations (7) and (8)) 

1
2 �	 − � 
 1

� � � " 

with k given by 

�" � � × �� × �� 
and these equations are not restricted to any particular 

(symmetric) motion. For instance, if they are applied to the 

solid-body rotation of an ellipsoid (three unequal axes, Jacobi 

ellipsoid [10, 11]) or the static one with internal currents of 

uniform vorticity (Dedekind ellipsoid [12, 13]), the known 

results are reproduced easily ([1]). We aim to study cases of 

non-axial symmetric motions in the near future. 
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